Paeoniflorin exerts neuroprotective effects by modulating the M1/M2 subset polarization of microglia/macrophages in the hippocampal CA1 region of vascular dementia rats via cannabinoid receptor 2

نویسندگان

  • Xian-Qin Luo
  • Ao Li
  • Xue Yang
  • Xiao Xiao
  • Rong Hu
  • Tian-Wen Wang
  • Xiao-Yun Dou
  • Da-Jian Yang
  • Zhi Dong
چکیده

Background Cerebral hypoperfusion is a pivotal risk factor for vascular dementia (VD), for which effective therapy remains inadequate. Persistent inflammatory responses and excessive chemotaxis of microglia/macrophages in the brain may accelerate the progression of VD. Endocannabinoids are involved in neuronal protection against inflammation-induced neuronal injury. Cannabinoids acting at cannabinoid receptor 2 (CB2R) can decrease inflammation. Based on the identification of paeoniflorin (PF) as a CB2R agonist, we investigated the neuroprotective and microglia/macrophages M1 to M2 polarization promoting effects of PF in a permanent four-vessel occlusion rat model. Methods One week after surgery, PF was intraperitoneally administered at a dose of 40 mg/kg once a day for 28 successive days. The effects of PF on memory deficit were investigated by a Morris water maze test, and the effects of PF on hippocampal neuronal damage were evaluated by light microscope and electron microscope. The mRNA and protein expression levels of key molecules related to the M1/M2 polarization of microglia/macrophages were assessed by RT-qPCR and Western blotting, respectively. Results Administration of PF could significantly attenuate cerebral hypoperfusion-induced impairment of learning and memory and reduce the morphological and ultrastructural changes in the hippocampal CA1 region of rats. Moreover, PF promoted an M1 to M2 phenotype transition in microglia/macrophages in the hippocampus of rats. In addition to its inhibitory property against proinflammatory M1 mediator expression, such as IL-1β, IL-6, TNF-α and NO, PF dramatically up-regulated expression of anti-inflammatory cytokines IL-10 and TGF-β1. Importantly, CB2R antagonist AM630 abolished these beneficial effects produced by PF on learning, memory and hippocampus structure in rats, as well as the polarization of microglia/macrophages to the M2 phenotype. Additionally, PF treatment significantly inhibited cerebral hypoperfusion-induced mTOR/NF-κB proinflammatory pathway and enhanced PI3K/Akt anti-inflammatory pathway. Effects of PF on these signaling pathways were effectively attenuated when rats were co-treated with PF and AM630, indicating that the mTOR/NF-κB and PI3K/Akt signaling pathways were involved in the PF effects through CB2R activation. Conclusion These findings demonstrated PF exerts its neuroprotective effect and shifts the inflammatory milieu toward resolution by modulation of microglia/macrophage polarization via CB2R activation.

منابع مشابه

Neuroprotective effect of berberine chloride on cognitive impairment and hippocampal damage in experimental model of vascular dementia

Objective(s):The major objective of the present study was to investigate the potential neuroprotective effect of berberine chloride on vascular dementia. Berberine, as an ancient medicine in China and India, is the main active component derived from the Berberis sp. Several studies have revealed the beneficial effects of berberine in various neurodegenerative disorders. Materials and Methods: T...

متن کامل

P108: Microglia in Traumatic Brain Injury

Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...

متن کامل

P 100: Stem Cells as Neuroinflammatory Modulator in TBI: A Narrative Review

Traumatic brain injury (TBI) is physical damage to the brain structure which has a high global rate of mortality and morbidity. TBI can cause intense inflammatory response due to accumulation of leukocytes in cerebral matrix and activation of microglia. Microglia can differentiate into M1 macrophages or M2 macrophages following the changes in biochemical properties of brain tissue. M1 sub type ...

متن کامل

The role of hippocampal (CA1) NMDA receptor on learning and memory in presence and absence of zinc chloride in adult male rats

Introduction: Zinc is an essential trace element that plays an important role in synaptic plasticity and modulating the activity of CNS and involve in learning and memory. Synaptic vesicle zinc in the hippocampus area exerting modulatory effects on NMDA glutamate receptor. Method: In this experiment the effects of NMDA agonist and antagonist administration intra hippocampus on passive avoidan...

متن کامل

P130: The Role of Rho-Kinase (ROCK) in Microglia/Macrophage Polarization in Neuroinflammatory Diseases

Macrophage/microglia with heterogonous phenotype and function under physiological and pathological conditions are the main cell lineage involved in inducing immune responses in neuroinflammatory diseases which exhibit combined inflammatory and anti-inflammatory functions. An increase in the expression of iNOS triggers M1 phenotype that secrete high concentrations of inflammatory cytokines, whil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018